
A Framework for QoS-Aware Service Composition
Arnor Solberg

SINTEF
P.O. Box 124 Blindern
N-0314 Oslo, Norway

arnor.solberg@sintef.no

Sten Amundsen
Simula Research Labratory

P.O. Box 134
N-1325 Lysaker, Norway

stena@simula.no

Frank Eliassen
Simula Research Labratory

P.O. Box 134
N-1325 Lysaker, Norway

frank@simula.no

Jan Øyvind Aagedal
SINTEF

P.O. Box 124 Blindern
N-0314 Oslo, Norway

Simula Research Laboratory
P.O. Box 134

N-1325 Lysaker, Norway

jan.aagedal@sintef.no

ABSTRACT
Preparing an open environment for dynamic composition and re-
composition of services requires standardized technologies for
building, deploying, and running software systems. One key
challenge in this respect is how to compose services and
orchestrate the service collaboration to best fit the specified
behavior, both in terms of functionality and quality. In this paper
we present an approach for QoS-aware service composition. A
general framework, called service planning framework, is
presented. The framework is used at both build-time and run-time
to identify possible implementations of a service and choose one
service composition based on its QoS properties. At build-time we
exploit model-driven system development, and at run-time we
consider a QoS-aware execution environment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Software quality
assurance, productivity.

General Terms
Management, Design.

Keywords
Service composition, QoS, modeling, specification, MDA, model-
transformation, QoS-aware adaptation.

1. INTRODUCTION
Business rely more and more on distributed computing systems
for collaboration and trading between businesses and between
businesses and customers, i.e., Business to Business (B2B) and
Business to Customer (B2C). In most cases, business is dynamic,
so work methods and processes evolve over time. Thus, the
supporting systems also need to act dynamically and evolve in
pace with changing environments and requirements. In addition, a
distributed system needs to cope with different technologies and
continuous changes in the execution environment (due to
constrained system resource availability, load, etc.). One
appealing way of meeting these challenges is to dynamically
derive the structure and implementation of the system on demand.
Hence, based on specified requirements and constraints, the
requested service(s) are composed dynamically, e.g., by
orchestrating a set of available autonomous software entities (sub-

services). In this context, a significant aspect is the provided
quality of service (QoS). Services providing the right quality to
the right price will be requested. Then the challenge remains to
compose the service(s) based on specified requirements and price
constraints, utilizing available environment resources and
services.

To handle the complexities of distributed systems, object oriented
technology was an important step forward. It improved the
separation of concern between the different software entities in
the system. Currently system developers have embraced
components as the most suitable software entity for designing and
developing distributed systems. Component technology includes
important principles like encapsulation, interfaces, assumptions
(i.e., required interfaces) and reflection/introspection. From a user
perspective, a component-based system may be seen to offer a set
of services. These services are typically provided by a
composition of collaborating components. Due to the
encapsulation property, we might compose new services from
existing services, i.e., a recursive service composition. This view
of systems and the idea of late bindings are key aspects of the
Service Oriented Computing (SOC) paradigm [3].

The focus within component-based software engineering has
mainly been on modeling the functional properties [2], and
developing suitable execution environments for publishing and
running services. However, composing services on demand for
B2B and B2C systems (e.g., in a global web environment using
the Web service approach [4]), consideration of QoS (e.g., cost,
availability, execution delay, reputation and successful execution
rate) is considered to be vital. To gain proper management and to
be able to offer services with QoS-guarantees, we advocate that
QoS constraints should be carefully considered during the
development phases and also managed during execution.

This paper presents a general framework for QoS-aware service
composition (section 2). The framework includes a concept model
defining the core concepts for QoS-aware service composition,
and the specification of the behavioral aspects of what we have
denoted service planning. Application of the framework is
described in section 3. This section describes how to apply the
framework at build-time using a model-driven approach, in
alignment with the model-driven architecture (MDA™)
philosophy [7], as well as how the framework might be applied at
run-time for planning service composition and re-composition.
Build-time QoS modeling is based on the current version of the

