
Web Services Orchestration and Interaction Patterns:
an Aspect-Oriented Approach

Guadalupe Ortiz Juan Hernández Pedro J. Clemente
Quercus Software Engineering Group

University of Extremadura
Computer Science Department

Avda. de la Universidad s/n. 10071 Cáceres, Spain
+ 34 924 38 70 68

gobellot@unex.es

+ 34 927 25 72 04

juanher@unex.es

+ 34 927 25 78 07

jclemente@unex.es

ABSTRACT
Web Service technologies offer a new and successful way for
interoperability among web applications. However, there is not a
unique and standard opinion as to how Web Services composition
must be implemented, and services involved are generally
strongly coupled, which raises problems at design,
implementation, maintenance and evolution. This paper shows
one approach to the implementation of orchestrations by using
aspect-oriented techniques, thus improving modularity, scalability
and flexibility in the compositions. Aspect-oriented programming
will also allow us to reuse the interaction patterns described by the
orchestrations in different contexts, as we will demonstrate in this
research.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, classes and objects, patterns.

D.1.0 [Programming Techniques]: General.

General Terms
Design, Languages.

Keywords
Web services compositions, orchestrations, business processes,
aspect-oriented programming.

1. INTRODUCTION
Web Services convey one step further in the long way which
object-oriented technologies and distributed platforms have
walked. These technologies offer a new and successful solution
for interoperability among web applications, and they have

become the best way to integrate third-party approaches, therefore
collaborating in the client-server architectures replacement by
peer-to-peer distributed architectures [4].

Once the general behaviour and definition of Web Services seem
highly consolidated, it is time to face how to tackle interaction
among different services. Unfortunately, there is so far no
agreement on how to implement Web Services composition.
Whereas different proprietary approaches rise in the business
process control, and various standards try to emerge in order to
solve future business connectivity, there is not yet any free
approach to compose Web Services in an easy way.

The terms orchestration and choreography [11] have recently
emerged to be two of the biggest attention points on Web Services
nowadays. They refer to two different ways for managing
business connectivity, and have arisen in a moment in which
many companies have begun to incorporate Web Services to their
deployments. Many languages have been proposed and discussed
for those types of collaborations among business processes, for
instance, XLANG [13], WSFL [8], or BPML [2], but we can
especially mention three of them in the area of Web Services:
BPEL4WS [1], WSCI [3] and WS-CDL [6]. Whereas the first
three are more oriented to business and flow control, the last
above mentioned are especially led to Web Services and their
composition, and this is precisely what we are going to focus on in
this paper.

BPEL4WS (Business Process Execution Language for Web
Services) allows users to describe the control logic for
coordinating different Web Services which takes place in a
process flow, that is, the way in which the invocations may be
ordered. It is mainly focused on permitting orchestration to be
defined, although abstract BPEL4WS attempts to describe
external observable behaviour of single services to be used for
choreography descriptions.

On the contrary, WSCI (Web Service Choreography Interface) is
based on the particular description of each service and the way in
which they all are choreographed, and it only describes the
observable interaction of Web Services with their users, which
may also be a Web Service. WSCI was proposed by Intalio, and it
was one of the working notes in the development of the W3C
Working Group. It is clearly oriented to choreographies, not to

