
A Framework for Requirements Monitoring of Service
Based Systems

Khaled Mahbub
Department of Computing

City University
London EC1V 0HB
44 20 7040 3722

am697@soi.city.ac.uk

George Spanoudakis
Department of Computing

City University
London EC1V 0HB
44 20 7040 8413

gespan@soi.city.ac.uk

ABSTRACT
This paper proposes a framework for monitoring the compliance
of systems composed of web-services with requirements set for
them. This framework assumes systems composed of web-services
that are co-ordinated by a service composition process expressed
in BPEL4WS and uses event calculus to specify the properties to
be monitored. The monitorable properties may include
behavioural properties of a system which are automatically
extracted from the specification of its composition process in
BPEL4WS and/or assumptions that system providers can specify
in terms of events extracted from this specification.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Assertion Checkers.

General Terms
Verification.

Keywords
Service-based systems, Requirements monitoring, Event Calculus,
BPEL4WS.

1. INTRODUCTION
The verification that a software system meets its requirements at
run-time has been acknowledged as a significant problem in
requirements engineering research [3][6][7]. This is because, even
if it can be demonstrated that a system can meet its requirements
prior to deployment, at run-time these requirements may be
violated. This may be the result of unpredicted changes in the
environment of a system or failure to anticipate the behaviour of
all the agents that may interact with it (i.e., other systems and
human users [3]). For systems which are composed dynamically
from autonomous web services co-ordinated by some composition
process (referred to as "service based systems" in the following),

the ability to monitor the compliance of run-time system
behaviour with requirements is even more important. This is
because in such systems, both the agents interacting with the
system and the individual services that constitute it that may
change or behave in unpredictable ways.

The common approach that underpins techniques developed to
support requirements monitoring at run-time assumes that system
providers must identify the set of requirements to be monitored,
specify them in some formal language, and then derive from each
formal requirement statement a pattern of events whose
occurrence at run-time would imply the violation of the
requirement. The event patterns are subsequently fed into some
monitor which checks a log of events generated by the system at
run-time and reports violations of the requirements. In a
monitoring setting, events are typically generated by the system to
be monitored either through instrumentation (i.e., the insertion of
code statements that can generate the expected events) [3][6][7],
or by querying the system if it has reflective capabilities [10].

Existing requirements monitoring techniques fail to deal
adequately with some significant complications which arise in
service-based systems, as they focus on systems with no
autonomous components. When, however, such components exist
as in service-based systems, the failure of some of them to
function as expected may lead other components to make
incorrect assumptions about the state of the system and,
consequently, take actions which would not have been taken if the
correct state of the system was known.

Consider, for instance, a car rental system (CRS) which acts as a
broker offering its customers the ability to rent cars provided by
different car rental companies directly from car parks at different
locations. Suppose also that CRS is implemented as a service
based system that consists of a service composition process that
interacts with:

� Car information services (IS) which are provided by different
car rental companies, and maintain registries of cars, check car
availability and allocate cars to customers as requested by CRS.

� Sensoring services (SS) which are provided by different car
parks in order to sense cars as they are driven in or out of car
parks and inform CRS accordingly.

� User interaction services (UI) that provide CRS with a front-
end that handles interactions with the end-users.

In a typical operational scenario, CRS receives car rental requests
from UI services and checks for the availability of cars by
contacting IS services. If an available car can be found at the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011…$5.00.

