
Dynamic Service Composition Using Semantic Information
Keita Fujii

School of Information and Computer Science
University of California
 Irvine, CA 92697, USA

+1-949-824-4105

kfujii@ics.uci.edu

Tatsuya Suda
School of Information and Computer Science

University of California
 Irvine, CA, 92697 USA

+1-949-824-4105

suda@ics.uci.edu

ABSTRACT
Dynamic composition of complex services from primitive
components brings flexibility and adaptability to future
applications. By properly selecting and combining components on
demand, applications would adapt to individual user preference
and would consider available context information.

Existing service composition systems often require users to
request services in strict syntax formats, such as data types,
service templates or logic formulas. This requirement may
become an obstacle for end-users to use such systems. Instead,
service composition should be semantics-based so that a service is
requested and composed not by its syntax but by its semantics.

In order to enable semantics-based dynamic service composition,
both the modeling of components as well as the service
composition mechanism must support semantics. To satisfy the
requirement of semantic support in the component modeling, we
have designed a new model named Component Service Model
with Semantics (CoSMoS). CoSMoS integrates the semantic
information of a component and the functional information of a
component into a single semantic graph representation. A unified
interface named Component Runtime Environment (CoRE) is
developed to convert different component implementations onto
the CoSMoS representation. Using the semantic support of
CoSMoS, we have developed a semantics-based service
composition mechanism named Semantic Graph based Service
Composition (SeGSeC). SeGSeC generates the execution path of
the requested service, and checks the semantics of the path against
the request. We have implemented a service composition system
using the above techniques, and demonstrated that our system
supports semantics-based dynamic service composition.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis; I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods – Semantic networks;
D.2.10 [Software Engineering]: Design – Representation.

General Terms
Algorithms, Design

Keywords
Dynamic service composition, component model, semantic graph,
CoSMoS, CoRE, SeGSeC

1. INTRODUCTION
Distributed component technologies such as CORBA and Web
Service bring a new vision of a future network environment where
a large number of components representing software services,
devices, or resources are distributed and transparently accessible.
In such an environment, a new application may be composed
from a set of components. This concept of composing complex
services (or applications) from primitive components is called
service composition. Service composition enables quick
development of new application functionality through the reuse of
the components for multiple compositions [14].

Service composition techniques can be categorized into two
types: static service composition, and dynamic service
composition [5]. Static (or proactive) service composition is an
approach in which application designers implement a new
application manually by designing a workflow or a state chart
describing the interaction pattern among components. BPEL4WS
[2] or WSCI [17], for example, are primarily designed for
supporting this approach. The static service composition supports
applications involving complex interaction patterns, such as
branch or iteration, but requires those applications to be manually
designed before being deployed. Therefore, the static service
composition is suitable for B2B type applications where
interactions among components are often complex but static and
easy to provision.

Dynamic (or reactive) service composition, on the other hand,
composes an application autonomously when a user queries for an
application. eFlow [4] and SWORD [13] are the examples of
dynamic service composition systems. Because the dynamic
service composition does not depend on a human to compose an
application, it may have difficulty in composing applications with
complex interaction patterns. Nevertheless, the dynamic service
composition has the potential to realize flexible and adaptable
applications by properly selecting and combining components
based on the user request and context. The dynamic service
composition may also elicit a number of useful applications that
are not envisioned at the design time. Therefore, the dynamic
service composition is suitable for end-user applications in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSOC'04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

